

Misura della vita media del mesone D^0

Marco Santimaria / Masterclass Internazionale 06.03.2025 - LNF

Eventi di collisione a LHCb

I protoni di LHC si scontrano in LHCb e generano molte particelle, tra cui i mesoni D^0 . Come cerchiamo gli eventi interessanti?

Con milioni di eventi al secondo e centinaia di tracce? **Trigger**

> Con 30 eventi? A mano!

Physics like it's 1972!

Una volta era proprio cosi che si faceva: analizzare delle fotografie una per una ...

...2 MESONI! Però è valso un Nobel!

La camera a bolle "Gargamelle" al CERN

"Scanning girls"

Il mesone D^0

Un mesone D^0 è formato da un quark **charm** (c) e un quark **anti-up** (\overline{u})

Dal "Particle Data Group" (PDG):

Massa = 1865 MeV /c² (3.3×10^{-27} Kg, circa il doppio di un protone) Vita media = 0.4 ps (4×10^{-13} s), piccola ma misurabile! Velocità ~ c Carica elettrica = 0

É una particella instabile ed esplode in due frammenti più leggeri: i mesoni K^- e π^+

Decadimenti di particelle instabili

T_{1/2}

$$N = N_0 \cdot e^{-\frac{t}{\tau}} \implies \tau = \frac{T_{1/2}}{\ln 2} = \frac{T_{1/2}}{0.693}$$

A che servono gli studi di funzione?

Ad interpretare le leggi della natura
A passare l'esame di maturità (true story)

Traccia #2 della colonna sonora: "CP violation" \rightarrow <u>YouTube</u>

T_{1/2}

T_{1/2}

T_{1/2}

1

Come si misura la vita media?

1. Misuro direttamente il tempo: cronometro Il D^0 è troppo piccolo, veloce e non ha carica elettrica!

2. Ricavo il tempo misurando distanza e velocità:

se si muove alla velocità della luce:

 $d = c \cdot \tau = 0.12 \text{ mm}$

velocità = spazio / tempo Galileo: EASY

Per fortuna c'è la relatività!

Einstein: WRONG! Andando veloci il tempo si dilata!

Il D⁰ cammina per **qualche e i**l **in ne tro** prima ci esplodere: una distanza ben misurabile!

dilatazione del tempo

Un paio di problemini

1. I D^0 sono neutri quindi non lasciano tracce! Vediamo i K^- e π^+ di decadimento 2. Le collisioni ad alta energia non generano solo mesoni D^0 :

Produzione diretta $pp \rightarrow D^0$

Produzione secondaria $pp \rightarrow B \rightarrow D^0$

A lavoro!

Collegatevi a: <u>https://lhcb-d0.web.cern.ch/</u>

Inserite i vostri dati, selezionate una combinazione di eventi e cliccate "Save"

Albert		
Surname Einstein		
Grade A		
Combination Combination 4		
		2. D^0 lifetime
	Event Display	Analisi dati
1,600 - 1,400 - 1,200 -		-
1,000 -		
800 - 600 -	dia	

L'esercizio è diviso in 2 parti:

1. Event display

Ricerca delle tracce di decadimento

D0 Lifetime

ESERCIZIO 1: EVENT DISPLAY

ovvero: cercare l'ago nel pagliaio

Event display

Event Display Exercise

Il tipo di particella è comodamente indicato dal **colore della traccia** Potete cambiare/ruotare la vista, zoomare, e rimuovere il rivelatore. Sperimentate!

Esempio: un evento facile

Alla ricerca di un K^- (rosso) e π^+ (verde) che si incontrano in un "punto" (vertice) Il vertice deve essere **separato** dal vertice primario (dove originano la maggior parte delle tracce)

...e uno più difficile!

Salvare un evento

Non tutti gli eventi sono buoni!

* $m_{D^0}^2 = m_K^2 + m_{\pi}^2 + 2\sqrt{m_K^2 + p_K^2}\sqrt{m_{\pi}^2 + p_{\pi}^2} - 2p_K p_{\pi} \cos \vartheta$

Cos'è un istogramma?

Un modo di rappresentare graficamente una serie di misure

- Ogni misura è classificata in un intervallo ("bin") a seconda del suo valore
- L'altezza delle barre è il numero di volte in cui il valore misurato cade all'interno del bin

Esercizio 1: risultato

Alla fine dell'esercizio 1 si ottiene l'istogramma di massa del D^0

ESERCIZIO 2: D^0 LIFETIME

ovvero: un tipico giorno di lavoro al CERN!

Segnale vs fondo

Passiamo ora all'analisi dati, partiamo da un istogramma di massa... ma con **più dati!** Notiamo due popolazioni sovrapposte:

Ricerca del decadimento raro $B \rightarrow \mu^+ \mu^-$

Tutti i campioni hanno segnale e fondo: più grande è il loro rapporto, più chiara l'osservazione!

Bisogna accumulare dati per decretare una scoperta!

Fit alla massa

Per isolare il segnale a cui siamo interessati (il picco di massa del D^0) eseguiamo un FIT

Fit alla massa

Il fit trova i parametri che meglio si adattano ai dati. Il parametro μ (mean) della Gaussiana è la misura della massa del D^0 , il parametro σ (standard deviation) indica l'errore.

Rimuovere il fondo

Selezioniamo la regione di segnale, prendendo una regione larga 3σ attorno al valore centrale μ . Gauss docet: entro 3σ è contenuto il 99.7 % del segnale

Fraction

Rimuovere il fondo: sfruttiamo più variabiliti variabiliti de 1,820 1,830 1,840 1,850 1,860 1,870 1,800 1,900

Abbiamo "tagliato" sul valore della massa, ma possiamo **sfruttare altre variabili** per separare segnale e fondo e quindi **migliorare la misura**.

Dopo aver definito la regione di massa possiamo analizzare: PT, TAU, IP

vediamole una per una

Impulso trasverso (P_T)

$$P_K + P_\pi = P_{D^0}$$

P⊤ è la componente dell'impulso trasversale ai fasci di protoni (z).

Pitagora!
$$P_T = \sqrt{P_x^2 + P_y^2}$$

NB: scala logaritmica sull'asse y!

Il segnale tende ad avere PT più alto

Scala logaritmica

La scala logaritmica serve per apprezzare meglio le differenze su vari ordini di grandezza!

FIND ENOUGH PAPER TO MAKE THEIR POINT PROPERLY.

Tempo di decadimento (τ)

Parametro d'impatto (IP)

Dalla barra sinistra è possibile selezionare il range delle variabili in modo da rimuovere quanto più fondo possibile

 Attenzione: i tagli sulle variabili rimuoveranno anche una parte del segnale!
→ trovare il giusto compromesso

Otteniamo finalmente la distribuzione del tempo di decadimento del segnale, sulla quale possiamo eseguire un fit

Fit al tempo di decadimento

Dal fit otteniamo il parametro au, ovvero la vita media del D^0

Il risultato del fit è in accordo con il PDG?

Prendiamo il testo sacro Anche disponibile su: <u>https://pdg.lbl.gov/</u>

E cerchiamo il D^0 : Interactive listings \rightarrow mesons \rightarrow charmed $\rightarrow D^0$

Analisi dati LHCb

Risultato

d La vita media dal fit diminuisce riducendo il parametro d'impatto, perché?

HINT: come vengono prodotti i D^0 ?

.0

Produzione del D^0

Nella produzione secondaria stiamo sommando lo vite medie, ottenendo un valore sistematicamente più alto

Produzione diretta

Produzione secondaria

Riducendo IP stiamo rimuovendo gli eventi in cui il D^0 proviene dal decadimento di un B !

Ci avviciniamo al valore corretto!

Riducendo l'IP il risultato si avvicina a quello del PDG. Restano alcuni **errori sistematici** che non abbiamo considerato