Chiedere alla polvere Introduzione alla Fisica delle particelle elementari

Francesco Dettori Università degli Studi di Cagliari

Image Credits: World Meteorological Organization

proteo - a troit Hel		MUALU-1		0804.00 + 4		bioteco - p (seass riv)				
Metalli							Metalloidi		ionmetalli	
Metalli alcalini	Metalli alcalino	Attinidi REE (Lantanidi)	Metalli di	Metalli di transizione Pust-metall		probabili	Poliatemici	Diatomici	Gas nobili	
	terroxi			REE	Metalli preziosi	transizione				
probabili	probabili	REE = Terre Rate		nrobabili		probabili				

a 2012

Image Credits: Wikipedia

Handrait Rayer St. a.M. RABE Tuchy B Canal

Image Credits: Radiopaedia

$E = h\nu$

$$rac{1}{\lambda_{n,m}}=Ry\left(rac{1}{n^2}-rac{1}{m^2}
ight)$$

$$E = \sqrt{m^2 c^4 + p^2 c^2}$$

$$m = 0 \Rightarrow E = pc$$

$$v = 0 \Rightarrow E = mc^2$$

$$E = h\nu = pc$$

$$p = \frac{h\nu}{c} = \frac{h}{\lambda} \qquad \Rightarrow \lambda = \frac{h}{p}$$

$$\psi = \psi(A)\psi(B)$$

$$\psi_{S} = \psi_{Caio}(A)\psi_{Tizio}(B) + \psi_{Caio}(B)\psi_{Tizio}(A) \qquad \text{Simmetrico} \\ \psi_{A} = \psi_{Caio}(A)\psi_{Tizio}(B) - \psi_{Caio}(B)\psi_{Tizio}(A) \qquad \text{Antisimmetrico}$$

Principio di esclusione di Pauli Due fermioni non possono occupare simultaneamente lo stesso stato quantico.

 $^{14}_{7}\mathrm{N} + \alpha \rightarrow ^{17}_{8}\mathrm{O} + \mathrm{H}$

Neutronografia di una caffettiera https://www.youtube.com/watch?v=VESMU7JfVHU

Image Credits: Wikipedia

Image Credits: Brantley Lake State Park

$$E = h\nu$$

$$E = \sqrt{m^2 c^4 + p^2 c^2}$$

$\overline{i\hbar\gamma^{\mu}\partial}_{\mu}\psi(x)-m\psi(x)=0$

Camera a Nebbia https://www.youtube.com/watch?v=i15ef618DP0

$$F = ma = m\frac{v^2}{R} \qquad \vec{F} = e\vec{v} \times \vec{B}$$
$$R = \frac{mv}{eB}$$

$$dN \propto -Ndt$$

$$N = N_0 e^{-t/\tau}$$

$$N = N_0 e^{-t/\tau}$$
$$\tau = 2.2 \mu s$$
$$v = 99.5\% c$$

 $d = \tau \cdot v \simeq 2.2 \cdot 10^{-6} \text{s} \cdot 0.995 \cdot 3 \cdot 10^8 \text{m/s} = 660 \text{m}$

$$d' = \frac{d}{\sqrt{1 - \frac{v^2}{c^2}}} \simeq 10 \cdot d = 6600 \text{m}$$
$$\tau = \frac{\tau'}{\sqrt{1 - \frac{v^2}{c^2}}} \simeq 10 \cdot \tau = 22\mu s$$

 ${}^{14}_{6}\text{C} \rightarrow {}^{14}_{7}\text{N} + e^{-}(+\bar{\nu}_{e})$ $n \to p + e^-(+\bar{\nu}_e)$ e^{-} e $\bar{\nu}_e$ n \underline{n} pp

Detection of the Free Neutrino*

F. REINES AND C. L. COWAN, JR. Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico

(Received July 9, 1953; revised manuscript received September 14, 1953)

 A^{N} experiment¹ has been performed to detect the free neutrino. It appears probable that this aim has been accomplished although further confirmatory work is in progress. The cross section for the reaction employed,

$$\nu_{-} + p \rightarrow n + \beta^{+}, \tag{1}$$

Image Credits: Physical Review

Image Credits: Argonne National Laboratory

Neutrino transformed into μ-meson

The 'Neutrino Event'

Nov. 13, 1970 — World's first observation of a neutrino in a hydrogen bubble chamber

Collision creates π -meson

00

Invisible neutrino collides with proton

29

Image Credits: Superkamiokande

$$\mu^- \to e^- \bar{\nu}_e \nu_\mu$$

$$\mu^+ \to e^+ \nu_e \bar{\nu}_\mu$$

Image Credits: Fermilab

Image Credits: Fermilab

$$S = 4\pi r^{2}$$

$$n = \frac{N}{4\pi r^{2}}$$

$$F \propto \frac{1}{r^{2}}$$

$$F = \frac{GmM}{r^{2}} \qquad F = k\frac{qQ}{r^{2}}$$

Principio di indeterminazione Di uno stato quantistico non possiamo misurare con precisione arbitraria tutte le grandezze simultaneamente.

Se conosciamo con alta precisione l'impulso allora non conosciamo la posizione e come abbiamo detto prima la particella è delocalizzata. Viceversa se si può conoscere la posizione non se ne conosce l'impulso, quindi la velocità.

 $\underline{\Delta x}\Delta p > \hbar$

 $\Delta E \Delta t > \hbar$

Image Credits: Wikipedia

$$p + p \rightarrow n + p + \pi^+$$

 $p + p \to n + \Delta^{++} \to n + p + \pi^+$

$$E = E_1 + E_2$$
$$p = p_1 + p_2$$
$$E = \sqrt{m^2 c^4 + p^2 c^2}$$
$$m = \sqrt{E^2 - p^2 c^2}/c^2$$

Image Credits: S. Oggero

Image Credits: Lawrence Berkeley National Laboratory

 $\begin{array}{c|c|c} \mbox{Fermioni} & \mbox{Bosoni} \\ \mbox{Spin 1/2} \dots & \mbox{Spin 0, 1} \dots \\ \mbox{Leptoni} & \mbox{Adroni} \\ \mbox{Barioni} & \mbox{Mesoni} \\ \mbox{e, } \mu, \nu & \mbox{p, n, } & \mbox{π, π^0} \\ \mbox{Strani} & \mbox{$\Lambda, \Sigma, \dots $} & \mbox{$K, K^0$} \\ \end{array}$

Conservazione	Avviene	NON avviene
Massa / energia	$n \to p e^- \bar{\nu}_e$	$\mid p \rightarrow n e^+ \nu_e *$
Carica elettrica	$n \rightarrow p e^- \bar{\nu}_e$	$\mid e^- \rightarrow \gamma \nu_e$
Numero e "flavour" leptonico	$n \rightarrow p e^- \bar{\nu}_e$	$\mid n \rightarrow p e^{-\gamma}$
	$\mu^- \to e^- \bar{\nu}_e \nu_\mu$	$\mid \mu^- \to e^- \gamma$
Numero barionico	$\gamma \to p\bar{p}$	$\mid p \to \pi^+ \gamma$
Stranezza	$pp \to \Lambda^0 \bar{n} K^0 \gamma$	$\mid pp \to \Lambda \bar{n}\gamma$
	$\Lambda^0 \to p \pi^- *$	

^{*}Alcune di queste reazioni possono avvenire in determinate condizioni o tramite diverse interazioni...

q = -1 q = 0

q = -1 q = 0

$$q = -1$$

Image Credits: V. E. Barnes et al. Phys. Rev. Lett. 12, 204

Image Credits: Bloom et al. Phys. Rev. Lett. 23, 930 (1969)

Quark	Carica	Spin
u	+2/3	1/2
d	-1/3	1/2
s	-1/3	1/2
\bar{u}	-2/3	1/2
$ar{d}$	+1/3	1/2
\overline{S}	+1/3	1/2

Particella	Carica	Spin	Quark
p	+1	1/2	uud
$ar{p}$	-1	1/2	$ar{u}ar{u}ar{d}$
n	0	1/2	udd
n	0	1/2	$ar{u}ar{d}ar{d}$
π^+	+1	0	$u ar{d}$
π^{-}	+1	0	$u ar{d}$
π^0	0	0	$u\bar{u} + d\bar{d}$
$ ho^+$	+1	+1	$u ar{d}$
Δ^{++}	+2	3/2	uuu
Δ^+	+1	3/2	uud
Δ^0	0	3/2	udd

Particella	Carica	Spin	Quark
Λ^0	0	1/2	uds
Σ^0	0	1/2	uds
Σ^+	1	1/2	uus
Σ^{-}	-1	1/2	dds
K^+	+1	0	$u\bar{s}$
K^0	0	0	$d\bar{s}$
$ar{K}^0$	0	0	$s \bar{d}$
[I] 	-1	1/2	ssd
Ξ^0	0	1/2	uss
Ω^{-}	-1	1/2	sss

Image Credits: CERN

$$F = \mathbf{G} \frac{mM}{r^2}$$
$$F = \mathbf{k} \frac{qQ}{r^2}$$
$$F \propto \mathbf{g} \frac{e^{-\lambda r}}{r^2}$$

 $F \propto \mathbf{G}_{\mathbf{F}}$? $F \propto \mathbf{k} e^{-\omega r}$

Copyright @ 2004 Pearson Education, publishing as Addison Wesley.

$$K^0 \to \mu^+ \mu^-$$

$$K^0 \to \mu^+ \mu^-$$

$$^{60}_{27}$$
Co \rightarrow^{60}_{28} Ni $\rightarrow e^- \nu_e$

Image Credits: Columbia University

Image Credits: C. S. Wu, et al. - Phys. Rev. 105, 1413

Image Credits: Fermilab

Image Credits: CERN

 $\begin{aligned} \chi &= -\frac{1}{4} F_{AV} F^{AV} \\ &+ i \not= D \not= + h.c. \end{aligned}$ + K: Yes Ksp +hc $+ |\mathbf{p}, \mathbf{p}|^{2} - \vee(\mathbf{p})$

$\frac{1}{2} - \frac{1}{2} \partial_{\nu} g^{a}_{\mu} \partial_{\nu} g^{a}_{\mu} - g_{z} f^{abc} \partial_{\mu} g^{a}_{\nu} g^{b}_{\mu} g^{c}_{\nu} - \frac{1}{4} g^{2}_{z} f^{abc} f^{bcb} g^{b}_{\mu} g^{c}_{\nu} g^{d}_{\mu} g^{c}_{\nu} +$
$\frac{1}{2}ig_s^2(\bar{q}_i^{\rho}\gamma^{\mu}q_j^{\rho})g_{\mu}^{s} + G^a\partial^2 G^a + g_s f^{sde}\partial_{\mu}G^aG^bg_{\mu}^{e} - \partial_{\nu}W_{\mu}^+\partial_{\nu}W_{\mu}^$
$M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2\epsilon_{\mu}^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H -$
$\frac{1}{2}m_{\mu}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{\nu}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{3}}{y^{2}} +$
$\frac{2M}{s}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-) + \frac{2M^4}{s^2}\alpha_k - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^\mu -$
$W^+_{\nu}W^{\mu}) - Z^0_{\nu}(W^+_{\mu}\partial_{\nu}W^{\mu} - W^{\mu}\partial_{\nu}W^+_{\mu}) + Z^0_{\mu}(W^+_{\nu}\partial_{\nu}W^{\mu} -$
$[W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})] - iqs_{w}[\partial_{\nu}A_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - W^{+}_{\nu}W^{-}_{\mu}) - A_{\nu}(W^{+}_{\mu}\partial_{\nu}W^{-}_{\mu} -$
$W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} +$
$\frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + g^{2}c_{\nu}^{*}(Z_{\mu}^{*}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\mu}^{*}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) +$
$g^{\mu}s^{\nu}_{\nu}(A_{\mu}W_{\mu}^{-}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{-}W_{\nu}^{-}) + g^{\nu}s_{\mu}c_{\nu}(A_{\mu}Z^{\nu}_{\nu}(W_{\mu}^{-}W_{\nu}^{-} - W_{\nu}^{-}))$ $W^{+}W^{-}) = 0.4 - 2^{0}W^{+}W^{-}) = -1$
$W_{\mu} W_{\mu} = 2A_{\mu}Z_{\mu}W_{\mu} W_{\nu} = ga(B^{+} + B\phi^{-}\phi^{-} + 2B\phi^{-}\phi^{-}) = 1.2, (B^{+} + (A^{0})^{+} + A(A^{+} + a^{-})^{2} + (A^{0})^{2} + a^{-} + A(B^{+} + a^{-}) = 0.40)^{2} B^{2}$
$_{89}^{89} O_{A}[H^{+}(\phi^{-}) + 4(\phi^{-}) +$
$W^{-}(\phi^{0}a) \phi^{+} - \phi^{+}a \phi^{0}a + b \phi^{0}w^{+}(Ha) \phi^{-} - \phi^{-}a H) = W^{-}(Ha) \phi^{+} - \phi^{-}a \phi^{-}a H = 0$
$H_{\mu} [\psi \ \partial_{\mu} \psi - \psi \ \partial_{\mu} \psi \] + \frac{1}{2} g [H_{\mu} (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) - H_{\mu} (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu} \psi - \psi \ \partial_{\mu} H) + \frac{1}{2} H (H \partial_{\mu}$
$\phi \cdot \partial_{\mu} H) \left[+ \frac{1}{2} g \frac{1}{c_{\nu}} (Z_{\mu}^{\circ} (H \partial_{\mu} \phi^{\circ} - \phi^{\circ} \partial_{\mu} H) - i g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ} \phi - W_{\mu} \phi^{\circ}) + \frac{1}{2} g \frac{1}{c_{\nu}} M Z_{\mu}^{\circ} (W_{\mu}^{\circ})$
$igs_{\mu}MA_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) - ig\frac{-sc_{\mu}}{2c_{\nu}}Z^{0}_{\mu}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) +$
$igs_{\mu}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) - \frac{1}{4}g^{*}W_{\mu}^{+}W_{\mu}^{-}[H^{*} + (\phi^{*})^{*} + 2\phi^{+}\phi^{-}] -$
$\frac{1}{6}g^{3}\frac{1}{r_{\mu}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}[H^{2} + (\phi^{0})^{2} + 2(2s_{\mu}^{2} - 1)^{2}\phi^{+}\phi^{-}] - \frac{1}{2}g^{2}\frac{s_{\mu}}{s_{\nu}}Z_{\mu}^{0}\phi^{0}(W_{\mu}^{+}\phi^{-} +$
$W^{-}_{\mu}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{\mu}}{c_{\nu}}Z^{0}_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-} +$
$W^{-}_{\mu}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) - g^{2}\frac{a_{w}}{c_{w}}(2c_{w}^{2} - 1)Z^{0}_{\mu}A_{\mu}\phi^{+}\phi^{-} -$
$g^{i}s_{a}^{2}A_{\mu}A_{\mu}\phi^{+}\phi^{-} - e^{\lambda}(\gamma\partial + m_{s}^{\lambda})c^{\lambda} - \rho^{\lambda}\gamma\partial\nu^{\lambda} - \bar{u}_{j}^{\lambda}(\gamma\partial + m_{a}^{\lambda})u_{j}^{\lambda} -$
$ \frac{1}{2} d^{\lambda}_{j}(\gamma \partial + m^{\lambda}_{d})d^{\lambda}_{j} + igs_{\lambda}A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}^{\lambda}_{j}\gamma^{\mu}u^{\lambda}_{j}) - \frac{1}{3}(d^{\lambda}_{j}\gamma^{\mu}d^{\lambda}_{j})] + $
$\frac{\eta_{q}}{4c_{q}}Z^{0}_{\mu}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{\beta})\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_{\psi}^{2}-1-\gamma^{\beta})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(\frac{2}{3}s_{\psi}^{2}-1))$
$(1 - \gamma^{\circ})u_{j}^{3}) + (d_{j}^{3}\gamma^{\mu}(1 - \frac{5}{3}s_{ss}^{2} - \gamma^{\circ})d_{j}^{3})] + \frac{g_{\mu}}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^{\circ})e^{\lambda}) +$
$(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})C_{\lambda\mu}d_{j}^{\kappa})] + \frac{m}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})\nu^{\lambda}) + (d_{j}^{\kappa}C_{\lambda\mu}^{\dagger}\gamma^{\mu}(1 + \nu^{5})v^{\lambda})]$
$\gamma^{5}(u_{j}^{\lambda})] + \left[\frac{ig}{2\sqrt{2}}\frac{m_{e}^{2}}{M}\left[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right] -$
$ \frac{g}{2} \frac{m_{\lambda}^{\kappa}}{M} [H(\tilde{e}^{\lambda}e^{\lambda}) + i\phi^{0}(\tilde{e}^{\lambda}\gamma^{5}e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^{+} [-m_{d}^{\kappa}(\tilde{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) +$
$m_{\pi}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda n}(1+\gamma^{5})d_{j}^{n}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(d_{j}^{\lambda}C_{\lambda \kappa}^{\dagger}(1+\gamma^{5})u_{j}^{n}) - m_{\pi}^{\kappa}(d_{j}^{\lambda}C_{\lambda \kappa}^{\dagger}(1-\gamma^{5})u_{j}^{n})]$
$\gamma^{5}[u_{j}^{s}] - \frac{g}{2} \frac{su_{j}^{\lambda}}{M} H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda}) - \frac{g}{2} \frac{m_{j}^{\lambda}}{M} H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda}) + \frac{ig}{2} \frac{su_{j}^{\lambda}}{M} \phi^{0}(\bar{u}_{j}^{\lambda}\gamma^{5}u_{j}^{\lambda}) -$
$\frac{ig}{2}\frac{m_{1}^{3}}{M}\phi^{0}(d_{i}^{3}\gamma^{5}d_{i}^{3}) + \bar{X}^{+}(\partial^{2} - M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - M^{2})X^{-} + \bar{X}$
$\frac{1}{2}\frac{M^2}{M^2}X^0 + \tilde{Y}\partial^2 Y + igc_w W^+_\mu (\partial_\mu \tilde{X}^0 X^ \partial_\mu \tilde{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \tilde{Y} X^$
$\partial_{\mu}\bar{X}^{+}Y$ + $igc_{a}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+})$ + $igs_{a}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y -$
$\partial_{\mu}\tilde{Y}X^{+}$) + $igc_{\mu}Z^{0}_{\mu}(\partial_{\mu}\tilde{X}^{+}X^{+} - \partial_{\mu}\tilde{X}^{-}X^{-})$ + $igs_{\mu}A_{\mu}(\partial_{\mu}\tilde{X}^{+}X^{+} -$
$\partial_{\mu} \hat{X}^{-} X^{-}) - \frac{1}{2} g M [\hat{X}^{+} X^{+} H + \hat{X}^{-} X^{-} H + \frac{1}{c_{0}^{2}} \hat{X}^{0} X^{0} H] +$
$\frac{1-2\alpha_{+}^{2}}{2\alpha_{+}}igM[\bar{X}^{+}X^{0}\phi^{+} - \bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2\alpha_{+}}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] +$
$igMs_{e}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{4}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

The end?

Dark Energy Accelerated Expansion

LHCb è

- Antimateria (violazione CP)
- Nuove interazioni (con misure di precisione)
- Nuovi stati (pentaquark, tetraquark...)
- Dark matter con nuove particelle

•

The end?

Legge delle proporzioni definite: Quando due o più elementi reagiscono a formare una data sostanza, si combinano sempre secondo proporzioni in massa definite e costanti.

Legge delle proporzioni multiple o di Dalton Se due elementi formano più di un composto, i rapporti tra le masse del secondo elemento, combinati con una massa fissa del primo, stanno tra loro in rapporti pari a frazioni tra numeri interi piccoli.

$$M = \frac{AQ}{Fz} \qquad M = Nm$$
$$m = \frac{A}{N_A} \qquad e = F/N_A$$

Q = Nze

$$F = ma = m\frac{v^2}{R} \qquad F = e(E + vB)$$
$$R = \frac{mv}{eB}$$

Credits: Wikipedia

$$F = ma = mg$$
 $F = eE$

 $\overline{F_A} \propto r$

$$m = \rho V = \frac{4}{3}\pi r^3 \rho$$

Image Credits: Wikipedia

Il Modello Standard a inizio '900?					
	Fermioni			Bosoni	
	e^-	n	p	γ	
Carica	-1	0	+1	0	
Spin	1/2	1/2	1/2	1	
Massa (MeV)	0.511	939	938	0	
	Materia			Interazione	

$$\psi = \psi(A)\psi(B)$$

$$\psi_{S} = \psi_{Caio}(A)\psi_{Tizio}(B) + \psi_{Caio}(B)\psi_{Tizio}(A) \qquad \text{Simmetrico} \\ \psi_{A} = \psi_{Caio}(A)\psi_{Tizio}(B) - \psi_{Caio}(B)\psi_{Tizio}(A) \qquad \text{Antisimmetrico}$$

Principio di esclusione di Pauli Due fermioni non possono occupare simultaneamente lo stesso stato quantico.

$$N = N_0 e^{-t/\tau}$$

$$\tau = 2.2\mu s$$
$$v = 99.5\% c$$

 $d = \tau \cdot v \simeq 2.2 \cdot 10^{-6} \mathrm{s} \cdot 0.995 \cdot 3 \cdot 10^{8} \mathrm{m/s} = 660 \mathrm{m}$

$$d' = \frac{d}{\sqrt{1 - \frac{v^2}{c^2}}} \simeq 10 \cdot d = 6600 \mathrm{m}$$

Velvet Underground

Principio di indeterminazione Di uno stato quantistico non possiamo misurare con precisione arbitraria tutte le grandezze simultaneamente.

Se conosciamo con alta precisione l'impulso allora non conosciamo la posizione e come abbiamo detto prima la particella è delocalizzata. Viceversa se si può

conoscere la posizione non se ne conosce l'impulso, quindi la velocità.

 $\Delta x \Delta p > \hbar$

 $\Delta E \Delta t > \hbar$

redits: M. C. Escher

Trasiazioni nello spazio, nel tempo e rotazioni intorno a un asse, a cui corrispondono la conservazione della quantità di moto, dell'energia e del momento angolare; trasformazioni di Lorentz.

Parità P (riflessioni nello spazio), invarianza T (la "freccia del tempo" cambia verso) e coniugazione di carica C (scambio materia-antimateria).

Trasformazioni che corrispondono alla conservazione del numero leptonico e barionico.

Trasformazione a cui corrisponde la conservazione della carica elettrica.

Simmetria	Proprietà	Quantità conservata
Traslazione nello spazio	Omogeneità dello spazio	Quantità di moto
Rotazione nello spazio	Isotropia dello spazio	Momento angolare
Traslazione nel tempo	Omogeneità del tempo	Energia

CPT (Inversione di) Carica Parità Tempo

Image Credits: Symmetry Magazine

